F. Weimer, Passive DNS Replication, Draft (r11)

Passive DNS Replication

Florian Weimer
fw@deneb.enyo.de

July 30, 2004

Abstract

This report describes a new approach to Domain
Name Service (DNS) replication. The DNS sys-
tem relies heavily on replication (based on zone file
transfers) to achieve its reliability goals, but this
form of replication typically requires cooperation
from other DNS administrators. However, certain
failures still occur in practice, and a decoupled, cen-
tralized replica of DNS data faces scalability issues
if it is based on zone transfers.

Our proposed alternative, dubbed passive DNS
replication, does not require cooperation from zone
administrators and is able to recover from addi-
tional failures. It automatically adapts to real-
world DNS query patterns, but it does not aim at
complete replicas of individual DNS zones.

We also show other applications for the repli-
cated data, some of them related to fighting worms,
bots and other forms miscreant activity on the cur-
rent Internet.

1 A quick introduction to

DNS

In this section, we provide a very rough overview
over the Domain Name System, viewing it as a dis-
tributed, replicated database. We omit a few de-
tails (such as different record classes and recent de-
velopments like DNS security).

1.1 DNS record types

DNS can be viewed as a distributed database
that uses domain names as a key. Queries (also
called lookups or name resolution attempts) spec-
ify a domain name and the record type to be re-

turned. These queries are processed by name ser-
vices, which answer them either by consulting lo-
cal databases, or by querying other name servers.
They return resource records (RRs, or records).
These records include the domain name key, the
record type, and the actual query result (which can
be a domain name as well, or some other piece of
data).

Common record types which are critical to Inter-
net applications and DNS itself are:

e A records, which assign IP addresses to do-
main names,

e CNAME records, which map aliases to under-
lying domain names,

e MX records, which are used for mail routing,

e NS records, used by DNS itself to assign name
servers to domain names, and

e PTR records, which can be used to provide a
“reverse lookup” from IP addresses to domain
names (in some cases).

Other record types are used in some cases
(e.g. SRV records and TXT records), but at the
moment, they are not critical for the operation of
the Internet.

1.2 DNS organization and replica-
tion

The smallest unit of replication is a zome. Zones
contain a set of records under a certain domain. In
traditional DNS implementations, zones are repli-
cated from a primary DNS server to secondary
servers using various forms of zone transfer proto-
cols (some of which support incremental transfers).

F. Weimer, Passive DNS Replication, Draft (r11)

A zone can contain NS records that associate
subdomains with other name services. This associ-
ation is called delegation. A name server to which a
zone has been delegated is said to be authoritative
for this zone.

In the past, zone transfers used to be available to
the general public. This is no longer the case, and
it’s also impractical for zones that contain millions
of mostly unused records (according to DENIC eG
(2004), there are 7.7 million domains registered di-
rectly under .DE, which translates to over 15 million
resource records). Nowadays, zone file transfers are
only allowed for designated secondary name servers
(which provide backup replicas of the zone). In
many cases, alternative protocols replace DNS zone
file transfers.

1.3 Caching of stale data

DNS uses extensive caching based on a time-to live
field. The TTL value is supplied by authorita-
tive name servers the value configured by the zone
administrator. Each second, non-authoritative
servers decrease by one the T'TL of the records they
cache. If the TTL reaches zero, the record is ex-
pired from the cache.

As a result, DNS strongly favors data availability
over data consistency. A zone administrator cannot
invalidate already cached records. The TTL-based
expiration is the only invalidation mechanism (be-
sides manual intervention of cache administrators,
of course). This means that most DNS data is po-
tentially out-of-date or stale.

On the other hand, clients almost never query
authoritative servers directly, but try to obtain
DNS records from a previously configured fixed set
of caching name servers (also called caching re-
solvers). This means that these servers can be used
to alter the DNS view of many clients.

1.4 Query limitations

Basically, DNS only supports a single kind of query:
supply a domain name and a record type, and re-
ceive the corresponding data. This means that be-
fore other keys can be used, they have to be rewrit-
ten into a domain name.

For example, reverse lookups submit an IP ad-
dress and ask for a corresponding domain name. In

this case, an IP address like 192.0.2.1 is encoded
into the domain 1.0.2.192.in-addr.arpa.

The necessary record types to support such
queries have to be added by the zone administrator
(in this case, of the 0.2.192.in-addr.arpa zone
or one of its parent zones). They are completely
optional, and DNS does not enforce consistency
with A records which map domains to the address
192.0.2.1. As a result, it is often impossible to
use PTR queries to obtain a reverse mapping from
IP addresses to domain names.

Other potentially interesting queries are unsup-
ported by DNS, either. It is not possible to query
for domain names with certain prefixes or suffixes.
For suffixes, it used to be possible to use zone file
transfers, but for most zones (including critical top-
level zones such as .COM or .DE), zone file transfers
are no longer allowed. Prefix-based queries are to-
tally unsupported, and so are a lot of other queries
(for example “Give me a list of all CNAME aliases
for this domain”).

2 Failure scenarios

Passive DNS replication can mitigate some kinds
of DNS failures. In this section, we briefly re-
view some typical failure scenarios which have been
relevant in the past. Unfortunately, typical name
server operators are somewhat secretive about fail-
ures they experienced, and it is hard to categorize
failures based solely on publicly accessible informa-
tion.

2.1 Unreachable name servers

Nowadays, unreachable name servers are hardly a
problem anymore. It’s easy to set up zone trans-
fers, and secondary DNS service is readily available,
both commercially and as a mutual service within
the Internet community. However, there are still
zones whose importance is underestimated and for
which no proper replicas exist (see Zone Labs, Inc.
(2003) for a description of one such case).

Attacks on servers. Denial of service attacks
have been attempted against DNS servers, but so
far, even large, coordinated attacks could not af-
fect the availability of important, widely-replicated
zones such as the root zone (see Lemos (2002),

F. Weimer, Passive DNS Replication, Draft (r11)

quoting Paul Vixie that “[t|here was never an end-
user that said there was a problem”).

2.2 Incorrect zone contents

A legitimate zone administrator might put incor-
rect data into a zone. Even if such mistakes are
quickly corrected, it takes some time until the data
expires from the caches (until the TTL reaches
Z€ero).

2.3 Replication of bad data

It is possible that the master copy is corrupted
(for example, truncated), and that this copy is
used to update some or all replicas, which become
corrupted as well. Today, most large zone opera-
tors seem to have reasonable safeguards against the
propagation of zone updates which remove far too
many records, but such failures do still occur from
time to time.

These errors are often reported as denial of ser-
vice attacks because in many cases, implementation
errors in widely deployed resolvers, operating sys-
tems and applications result in increased load on
the affected authoritative name servers. When all
name servers for a zone which contains frequently
used resource records become unavailable for an ex-
tended period of time, it is not unusual to observe
an increase in queries to these unreachable servers
by one or two magnitudes. It can become a chal-
lenge to bring back a zone to operation after such
a failure.

2.4 Manipulation of zone delegation

Manipulation of the parent zone (which contains a
delegation to the interesting zone) can have a direct
impact on the availability

Such attacks are relatively easy because these
zones (such as the top-level zones like .COM, .NET
and .DE) are maintained by using lots of different
parties of varying trust. There are some safeguards,
but they have failed in the past.

If such an attack is detected and it affects a high-
profile zone, service providers sometimes restore the
original delegation on their caching name servers,
to restore the previous DNS view for their own cus-
tomers.

Hijacking. In some cases, zone administrators,
registries or registrars guard the zone data only
very weakly against updates from unauthorized
sources. As a result, an attacker can hijack a child
zone by altering the delegation, pointing it to a
server under his control (see Artmann (2000) for a
report of a successful attack).

Such problems are not necessarily the fault of
these zone administrators. The huge number of
records in the widely used top-level zones mandates
a high degree of automation. Furthermore, there
has to be some process which allows domain own-
ers to regain control of the domain even if they have
lost the token they previously used to authenticate
themselves with the zone administrator. Such re-
covery procedures must also work if the domain
owner changed names (maybe as the result of a
takeover). Even after a strong, positive authentica-
tion of a customer, there still remains a possibility
that the customer’s claim of domain ownership is
no longer valid or has never been in the first place.

Domain hijacking cases are currently not a fre-
quent issue. However, changes in the domain trans-
fer process (see The Internet Corporation for As-
signed Names and Numbers, 2004) might increase
the number of successful attacks.

Deletion. As reported in Libbenga (2003), there
are cases in which a registrar removes a delegation
which is still active. Even if such steps are formally
correct (following policies that were required by the
US Government, see The Internet Corporation for
Assigned Names and Numbers, 2003), they often
result in severe disruption of service, and it takes
some time before the error can be corrected.

2.5 Affects on other protocols

In general, DNS information is used by the client
to obtain a host address which offers a particular
service. Therefore, most of the time, one can simply
use the IP address directly, even if name resolution
is not possible on the current DNS and has been
obtained by other means. However, there are a few
exceptions.

HTTP. Name-based virtual hosts can be used to
host a variety of sites on a single IP address. In
recent versions of the HTTP protocol, the client

F. Weimer, Passive DNS Replication, Draft (r11)

therefore transmits the domain name to which the
request applies. Typical HT'TP user agents (such as
web browsers) do not provide any user interface to
manually set the IP address, while keeping a certain
domain name on the surface. This is not a real
obstacle, but just a technical issue that prevents
the easy application of out-of-band DNS data.

SMTP. For a long time, SMTP has been using
DNS for routing of mail messages, that is, to deter-
mine the mail server (MX host) that handles mail
for the domain part of an email address. This mail
routing mainly occurs at the sending site. On the
receiving site, mail is often not routed using the
public DNS system. This means that it is possible
to successfully send email even in case of a DNS
failure.

However, anti-spam measures have greatly in-
creased the dependency on DNS on the receiving
side of an email message:

e Some mail servers only accept connections
from IP addresses which have a valid PTR
record.

e During the initial SMTP handshake, the con-
necting mail server (which acts as a client
during the protocol) supplies a host name.
Some servers apply extensive DNS-based san-
ity checks on the host name.

o A feature called sender call-out verification
tries to start delivery of an error report back to
the specified message sender. MX hosts which
use this feature can only receive mail if they
are able to send mail to the sender. (The idea
is to suppress spam which carries completely
forged sender addresses.)

e Some anti-spam applications use DNS as a dis-
tributed database to provide hints about the
trustworthiness of certain IP addresses (DNS
blacklists or DNSBLs). DNSBL lookup failures
are typical not fatal to mail delivery, though.

Some of these kludges can filter out a lot of un-
wanted email messages without many false posi-
tives, but typical anti-spam configurations reject
mail in case of DNS problems (be they global, or
local to the sender or receiver), at least temporar-
ily during the time the DNS problem persists. This
effect cannot be mitigated at the sending side.

Additionally, typical mail user agents do not of-
fer a reliable way to override mail routing (a prob-
lem similar to the HTTP case), but mail servers
typically provide straightforward and very flexible
means to control mail routing, overriding or sup-
plementing routing information from DNS.

3 Applications of third-party
DNS replication

If zone data is replicated and stored in a suitable
form, historic information on DNS records is avail-
able, and queries which previously were not sup-
ported by the DNS system can be performed. This
leads to a number of interesting applications.

3.1 Recovery of zone data

The first application of replicated data is recovery
of the lost master copy. If the replica is decoupled
from the master copy (and not completely over-
written by master copy updates), it is possible to
compensate some of the failures mentioned in sec-
tion 2.

If resource records are stored together with time-
stamp information, it is possible to recover the view
of a zone at a certain date. In particular, incorrect
records (maliciously or inadvertently) added later
can be discarded.

This information can be used by Internet ser-
vice providers to reconstruct zone data and locally
hijack zones on their own caching name servers,
restoring a previous, supposedly correct DNS view.
As described in the previous section, overriding in-
correct DNS information is often not an option for
end users because most clients lack the necessary
functionality (and users would have to resort to edit
hosts files and enter hard-coded name resolutions,
for example).

3.2 Malware containment

The major motivating factor for the development
of passive DNS replication was the inadequacy of
the PTR-based reverse lookup. Recall that DNS
provides a means to map IP addresses back to do-
main names, but even though A records combine
all the necessary data, PTR must be correctly con-

F. Weimer, Passive DNS Replication, Draft (r11)

figured by DNS administrators, otherwise the A re-
verse lookup is impossible.

Malware often contains a hard-coded domain
name which identifies a command and control host.
The malware performs a lookup on this domain
name to obtain a set of IP addresses, and contacts
one of those servers. After that, it waits for incom-
ing commands, and performs the requested actions
(for example, scanning for more vulnerable hosts,
or flooding a specified target with garbage packets).

Even if the malware is still operational on the vic-
tim’s computer, some of its functionality is unavail-
able once the domain name has been removed from
DNS. Therefore, knowledge of the domain name
is important, otherwise it is impossible to contact
a DNS administrator with a request for removal.
(Naturally, an attacker never bothers to set up cor-
rect PTR records.)

The problem is that malware is typically detected
after it has performed its domain name lookup.
Even if it is possible to eavesdrop on the network
traffic (which is technically infeasible in most ser-
vice provider environments), the network traffic
does not reveal the domain name. Only during
reconnection after disruption or similar events, re-
covery of the domain name is possible. This adds a
significant delay, which is sometimes unacceptable.

Reverse engineering of the malware binary can
recover the domain name being used, but this task
is time consuming and requires a copy of the mal-
ware in the first place, which is often impossible to
obtain in a reasonable time frame.

If a replica of actually used domain names with
their IP addresses is available, it is possible to store
these records into a database and perform queries
on this data set that are impossible on the tradi-
tional DNS system. In this case, one would index
those records based on the IP address, which makes
it very fast to obtain actually used domain names
for individual IP addresses.

3.3 Blacklisting detection

As mentioned before, some anti-spam measures use
DNS as a distributed database, e. g. to indicate that
email that arrives from certain hosts should be re-
jected.

Some of those blacklists, blacklists, including
a few which are used relatively widely, have a
high false-positive rate because the DNSBL oper-

ators apply questionable heuristics or implement
processes that try to maximize collateral damage.
Sometimes, no proper notification of the operator
of the host is attempted.

If DNS record data is available in form that al-
lows arbitrary access patterns, it can be scanned
for A records whose domains contain IP ad-
dresses which are encoded in the usual way (re-
versed dotted-quad notation followed by some
domain indicating the blacklist, for example
1.0.2.192.dnsbl.example.org), especially if the
IP addresses belong to the service provider’s own
address range. If a match is found, an alert is trig-
gered and a process which tries to resolve the issue
is initiated.

3.4 MX theft and other policy viola-
tions

MX theft occurs when someone points an MX
record to a loosely-configured foreign mail server,
without proper authorization, and uses it as a
backup mail relay for this domain.

While MX theft is not a real issue on the cur-
rent Internet, other forms of policy violations are
possible, especially on relatively open university or
corporate networks. Additional web servers are in-
stalled, and domain names are pointed to them,
without authorization from the responsible staff.
Secondary name service for foreign domains is pro-

vided.

3.5 Replacement of documentation

Some network operators are required by law to pro-
vide a list of domain names used by them. In Ger-
many, this mostly applies to networks in the public
sector and is the result of an obscure combination
of legal requirements and blanket authorization of
certain government bodies.

Open university networks may have documenta-
tion for official domain names which have been cen-
trally registered, but if anyone can run his or her
own authoritative name server (both technically
and in accordance with university policy), central-
ized documentation is very likely incomplete.

Replicas can provide a better approximation of
the situation. It remains to be seen if the authori-
ties accept them.

F. Weimer, Passive DNS Replication, Draft (r11)

3.6 Detection of configuration errors

A wide range of DNS configuration errors can be
detected quickly if zone data is available in a com-
pact form. Common configuration errors include:

e A public A record references an IP address
from private address space (which is not routed
on the public Internet).

e Leaked local top-level zones, such as .LOC or
.LOCAL.

e A CNAME record that in turn points to a
CNAME record.

e MX records that point to CNAME records or
hard-coded IP addresses.

e NS records that point to hard-coded IP ad-
dresses.

e Stale records of any kind.

e MX and NS records that point to hosts
on which the corresponding services are fire-
walled.

Such configuration errors result in unnecessary
delays, and erroneous CNAME records may even
cause email messages to bounce with errors. There-
fore, it is desirable to detect and correct them.

3.7

In most jurisdictions, trademarks must be de-
fended against (deliberate or accidental) infringe-
ment, otherwise they dilute and finally lose their
status as trademark. DNS zone replicas can be ex-
amined for potential infringement.

In order to cut down the rate of false positives
(e.g. domain names which are held by the trade-
mark owner, but not used officially), the name of
the name servers of those domains (as given in NS
resource records) can be used. If the servers belong
to the trademark owner, the company very likely
also owns the domain. IP addresses can also be
taken into consideration and compared to the ad-
dress ranges normally used by the company.

This approach does not use any out-of-band data
and is not affected by the poor data quality often
found in those resources. For example, for some
top-level zones, domain name WHOIS information

Trademark protection

is in a notoriously bad state and lots of entries
are unmaintained or contain obviously forged data.
Zone data, which is actually used for production
purposes, is generally more correct and up-to-date,
although it might lack details that (in some cases)
are available in WHOIS registries.

Phishing. Much in the same way, some forms of
“phishing attacks” can be detected. In these at-
tacks, someone creates a web site which looks like
the official site of the attacked company, under an
official-looking domain name. The web site, com-
pletely operated by the attacker, collects personal
information, such as account names and passwords.
Later, the attacker uses the collected data to de-
fraud the attacked company and its customers. Of
course, the attacker does not have to use domain
names which resemble official ones used by the com-
pany, and detection of the attack does not stop it.
However, zone replicas can be used as a building
block in a broader defense against such attacks.

3.8 DNS-related statistics

Replicated DNS data can be used for various statis-
tics, provided that artifacts introduced by the
method of replication are taken into account.

Interesting statistics are per-zone name server
distribution (how many zones are served from mul-
tiple servers in different autonomous systems?),
the number of domains served by different DNS
providers, and the percentage of authoritative
name servers which still offer zone file transfers for
hosted zones.

4 Passive DNS replication

In this section, we discuss the key aspects of our
DNS replication method, mostly independent of
our implementation.

4.1 Why passive?

We call our replication method passive because the
authoritative name servers (from which the data
is replicated) are not actively involved. Rather,
the method examines captured DNS response pack-
ets and extracts resource records from them. This
leads to the following definition:

F. Weimer, Passive DNS Replication, Draft (r11)

Passive DNS replication is the process
of capturing live DNS queries and/or re-
sponses, and using this data to build par-
tial replicas of as many DNS zones as pos-
sible.

Specifically, we are not interested in traffic pat-
terns (for example, query distribution over the
day), or query statistics (how often a domain is
requested, or who queries for which domains).

In practice, we concentrate on response packets
because they contain all the data we need to con-
struct a replica. Fig. 1 shows a typical DNS re-
sponse packet. A query packet would only contain
the fields up to the question section (and would
contain literally the same data besides some flags).
Looking at the answer, authoritative and addi-
tional section, it is possible to extract four resource
records (the IP addresses of the web and name
servers, and the two authoritative name servers for
the zone example.com). It is also possible to in-
fer the existence of a zone called example.net (or,
strictly speaking, ns.example.net).

higher-level protocol header
(e.g. UDP)
DNS header
QR, QCODE=0, RCODE=0, AA
question section
www.example.com IN A
answer section
www.example.com IN A 192.0.2.2
authoritative section
example.com IN NS ns.example.com
example.com IN NS ns.example.net
additional section
ns.example.com IN A 192.0.2.1

Figure 1: A DNS response packet

Compared to traditional replication of DNS data
using zone file transfers, our method has two key
advantages:

e Only those records which are actively used are
replicated, greatly reducing the storage needs.

e No cooperation from zone administrators is re-
quired.

There first advantage is also a disadvantage. The
replica will always be incomplete (and not up-to-
date). On the other hand, zone file transfers result
in very good coverage for a few zones, but over-
all coverage will still be poor because most name
servers no longer allow zone file transfers. Lots of
negotiations would be necessary, and we expect ad-
ministrators of large and frequently used zones at
large service providers to hesitate before they agree
to replication. Even quite reasonable terms (such
as those described in VeriSign, Inc., 2004) may hin-
der cooperation in research efforts and other activ-
ities.

4.2 Verification

Captured DNS responses are not necessarily legit-
imate. They could be completely forged, or they
could contain additional, incorrect data. Name
servers face similar problems, although they issue
the queries themselves and have somewhat more
control over the process. However, most spoofing
vulnerabilities have been fixed that do not require
a protocol change (the issue of a low-entropy query
ID is still unresolved).

Three different operation modes are possible
with respect to data verification:

e Responses are captured and analyzed. No ver-
ification is performed.

e Responses are correlated with queries, and
only if a matching query has been seen be-
fore, a response is accepted. Non-authoritative
answers and authoritative answers from name
servers which are not, in fact, authoritative,
are filtered out.

e The data part of responses is ignored, only the
domain names and resource records are used as
hints for independent DNS queries to standard
caching name servers. The results of these
queries are then recorded.

The first mode of operation has a very straight-
forward implementation. Bogus data can be in-
jected easily, though.

The second approach is very complex and of-
fers only a limited performance advantage over the
third. It is still subject to some forms of spoof-
ing (if queries are manipulated, too, and not just
responses).

F. Weimer, Passive DNS Replication, Draft (r11)

In the third case, loops must be avoided. The im-
plementation is also somewhat more complex than
in the first case (but it still much easier than on-
the-fly verification because the verification process
is delegated to off-the-shelf name server software).
Large record sets can be handled correctly, too.

Verification itself can be complicated because
the data that appears on the DNS system varies
slightly from service provider to service provider,
and a DNS response that cannot be verified on
one network might be perfectly valid on another
one. In some usage cases, one might even want
to work with potentially spoofed data (because
spoofed data might actually be used by clients as
well, for example).

If the replicated data is mainly used to support
queries that the DNS system cannot process di-
rectly, result sets based on replicated data can be
verified against official DNS records at query time.

Therefore, we start by implementing the first ap-
proach. When the number of spoof records reaches
unacceptable levels, we have to switch to the third
option.

4.3 Truncated responses

If a query to an authoritative name server matches
a large number of records (and the response UDP
packet would exceed 512 bytes, the limit set by the
DNS standards), some servers, instead of supplying
only partial information, return an empty response
with a set truncation (TC) bit. In response, the
querying caching name server will issue a second
query, this time over TCP.

Some forms of DNS query validation also work
with truncated responses to trigger additional
queries (see Pazi et al., 2003). This means that such
behavior may even occur if the number of records
is deliberately kept small, to avoid exceeding the
512 bytes limit.

Unfortunately, such truncated, empty responses
cause problems for completely passive DNS replica-
tion, unless capturing TCP queries and responses
(including some limited form of TCP stream re-
assembly) is implemented. This approach is very
complex, therefore this problem should be ad-
dressed by punting these responses to an active ver-
ification process (third option in section 4.2).

4.4 Wildcard records

Wildcard records (and other forms of record syn-
thesis by authoritative name servers) can lead to
lots of responses with different records, but of little
value to the applications mentioned above. Repli-
cation based on zone file transfers does not have
this problem because wildcards are explicitly rep-
resented.

Currently, several top-level domains perform
record synthesis. .MUSEUM has full wildcards, but
is not widely used. The name servers for .COM and
.NET answer with a synthesized A record if queried
for a domain name that includes certain protocol
violations (e.g. a label which contains non-ASCII
bytes, with the most significant bit set).

The current level of record synthesis does not
seem to cause any problems because the number of
synthesized responses from top-level zones is fairly
low. This might change once the replication effort
extends to areas with non-Latin scripts. The kind
of synthesis implemented by .COM and .NET could
make a difference.

If the number of synthesized records reaches a
level which is too costly, specific filters would have
to be added to suppress these records.

4.5 Supporting zone recovery

As mentioned before, one application of an inde-
pendent replica is recovery. This means that some
form of historic data has to be provided. We could
use database-specific means for this (for example,
use a database which provides point in time recov-
ery), or store reconstructed zone files in a revision
control system. But the approach we chose is differ-
ent. Based on the data extracted from DNS pack-
ets, we construct DNS flows. This name comes
from a similar concept called network flow data
which is used to reconstruct virtual connections on
a packet-switched network such as the Internet (see
Navarro et al. (2000) for a practical application of
this method).

DNS flows map complete resource records (for
example, A records consisting of a domain name
and an IP address) to a time span. The time span
corresponds to the interval of time during which
the resource record has been observed.

In order to obtain the zone as it was seen at a
particular point in time, the resource records for

F. Weimer, Passive DNS Replication, Draft (r11)

the zone have to be collected (based on indexing
or other means), and then the records whose first
time-stamp is later than the specified point in time
are discarded.

Based on the time the DNS flow ended, it is pos-
sible to implement an expiry mechanism, either at
query time, or in the database itself, to reclaim
storage.

5 The implementation

In this section, we describe a centralized im-
plementation of passive DNS replication. Our
implementation runs on UNIX-like systems, and
uses libenyo, a C++ library that provides some
reusable base components (including a DNS pro-
cessing library).

5.1 Architecture

The implementation consists of four different active
components which are arranged in a pipeline:

e sensors which capture name server responses
and forward them to

e analyzers, which extract the data from those
responses,

e a collector which consolidates data from vari-
ous analyzers into a single database,

e and query processors which provide read access
to the database.

This processing pipeline is shown in Fig 2. Data
flow is from top to bottom. The analyzers write
batches to a disk-based queue, and the collector
communicates the query processors by a persis-
tent database. All analyzers, the collector, and the
query processors run on the same host.

5.2 Sensors and their placement

By design, the sensors are very light-weight. Their
only task is to capture DNS packets sent by name
servers. All further processing is deferred to the
analyzers.

Currently, the sensor is implemented as a short
Perl script which is built on top of the Net: :Pcap
Perl module. For each DNS packet, the script strips

Sensor

Sensor

Analyzer

Sensor

Analyzer

Queue

Collector

Database

Query
processor

Query
processor

Figure 2: Architecture

the link-layer, IP and UDP headers, prepends the
magic string “DNSXFR0O0”, and sends it over a stan-
dard UDP socket to an analyzer process.

Sensor placement. Sensors should be placed
close to large, caching name servers, or at uplinks
of networks containing caching name servers. Typ-
ically, a caching name server requests much more
diverse data from other name servers than a single
authoritative name server can provide. It makes
sense to deploy sensors close to authoritative name
servers only if above-than-average coverage of the
zones served by those servers is desired.

Furthermore, as shown in Fig. 3, the sensor is
best placed at a point where it does not catch
traffic between the caching resolver and its clients.
Here, the sensor captures packets sent to and from
a caching name server on a monitor port of the
DMZ switch. In such setups, we are not interested
in DNS responses sent to the LAN because the re-
source records have already been recorded when the
entry was cached for the first time.

F. Weimer, Passive DNS Replication, Draft (r11)

Internet

LAN Router

DMZ, Local
Sensor switch Area
Network

Caching resolver

Figure 3: Sensor placement

Filtering using libpcap. We mentioned in sec-
tion 4 that at this stage, we are interested in re-
sponses only and do not want to capture queries.
Since the sensors use libpcap, it is possible to pre-
filter most of the network traffic with a filter ex-
pressions. Some possible choices are:

e “udp and port 53” forwards all DNS packets,
responses with answer records, responses with-
out them, and queries.

e “udp and src port 53” filters some queries,
namely those that come from caching name
servers (and clients) which do not use UDP
source port 53.

e “src port 53 and udp[10:2] & 0xf00f =
0x8000” (the “udp” is implicit) only forwards
DNS response packets which contain no error
codes.

e “src port 53 and udp[10:2] & 0xfOO0f
= 0x8000 and udp[14:2] > 0’ is even
more restrictive. Only response packets are
forwarded which contain an answer section
which is not empty.

If the caching name server is not multi-homed
(as in Fig. 3), a clause like “and dst host
192.0.2.57” can be added to the filter expression
(in this example, 192.0.2.57 is the IP address of
the name server). As a result, the responses sent
to the client are filtered out.

10

Sensor performance. Although the sensors are
implemented in Perl, performance is more than ad-
equate even for large networks. All the filtering
is performed by libpcap (or even the kernel, be-
fore it passes data to the library). This means
that the number of packets which actually hits the
Perl code is fairly low: on a large networks of over
10,000 hosts, we have observed 30 DNS packets
per seconds with non-empty answer sections, and
about the same amount with empty answer sec-
tions. The total number of DNS packets does not
exceed 250 per second, even though some externally
used caching name servers are on the network.

5.3 The analyzer

The analyzer can operate in two modes: In the first
mode, it captures DNS packets on a specified in-
terface (that is, it integrates a sensor component).
In the second mode, it listens on a standard UDP
socket for packets sent by one or more sensors. In
both cases, the low-level protocol headers are re-
moved. The DNS packet is parsed (using libenyo’s
DNS implementation). The resource records found
in the DNS packet (if any) are converted to textual
form and written to the disk-based queue structure,
in batch files which contain several thousand record
each.

The queue uses an approach similar to Maildir
(Bernstein, 2003) to allow for concurrent read and
write operations. It also supports multiple readers
which receive their own copy of the batches. The
queue is also important for bridging database out-
ages during software upgrades because it is contin-
uously available (as long as the underlying UNIX
file system is writable).

5.4 The collector

The collector reads analyzer output from the queue
described above and updates a persistent database
based on this information.

Database structure. Berkeley DB (Sleepycat
Software, Inc., 2003) is used as an in-process
database back end. Facilities of the libenyo li-
brary provide a modest level of separation between
data structures and their representation in Berkeley
DB tables (which is often a maintenance bottleneck

F. Weimer, Passive DNS Replication, Draft (r11)

if non-SQL low-level database implementations like
Berkeley DB are used).

Berkeley DB is used in transactional mode, so
that query processes can access the same database
while the collector is updating it.

Table 1 shows the database tables which are
used by the collector. Indexes are available for
all parts of the primary key (except the MX pri-
ority). In addition, the domains table is indexed
by domain name and reversed domain name, and
a partial index ins constructed from IP addresses
which are embedded in the domain name (like
1.2.0.192.in-addr.arpa).

The timestamps reflect the time span over which
the record has been observed (first and last occur-
rence), implementing the DNS flows described in
section 4.5.

Table Primary key Data

domains | domain ID domain
(record number) name

A IP address, time-stamp
domain ID

MX domain ID, MX time-stamp
host, priority

CNAME, two domain IDs time-stamp

NS, PTR

Table 1: Collector tables
Operation. The collector process reads the files

containing the batches, and removes them after
successful processing. When a record is processed,
its domain names are first converted to internal do-
main IDs (similar to interning symbols in Lisp). If
the domain is seen for the first time, it is automat-
ically inserted into the domains table, to assign a
unique ID. Based on the IDs of the domains that are
contained in a resource record, a key is constructed
and it is used to locate the time-stamp informa-
tion in the table corresponding to the record type.
The time-stamp is updated and written back to the
database if necessary. (If no record is found, one is
created, with the appropriate time-stamp values.)

5.5 Query processors

The query processor implements two different in-
terfaces: a command line interface and a FTP-style

11

server mode which should be started from inetd to
enable network access to the database. The main
difference between both interfaces is the way query
options are passed, query syntax and output format
are the same.

Query types and query syntax. The query
processes uses the indexes described in section 5.4
to provide the following query types:

e resource records for a domain (ordinary for-
ward lookup, also available through DNS)

e reverse lookup, either by IP address (for A
records) or by domain (for MX, CNAME, PTR
and NS records)

e “blacklist” lookups (given 192.0.2.178, it re-
turns 178.2.0.192.dnsbl.example.net)

e domain prefix lookup (list resource records for
all domains beginning with a specified string
of characters)

e domain suffix lookup (useful for recovering
zones, together with point-in-time recovery)

e domain lookup based on IP addresses (for
query an IPv4 prefix query, a list of
records with domain names which con-
tain a matching IP address is returned,
e.g. 1.2.0.192.in-addr.arpa matches a
query for 192.0.2.0/24)

The query syntax is very simple and uses a single
string per query. An IPv4 address in dotted-quad
notation triggers reverse lookup, and an IP prefix
the domain lookup based on IP addresses. If the
query string is neither an IP address nor an IP pre-
fix, it is assumed to be a domain. If the string starts
with “.” a domain suffix lookup is assumed. If it
ends with “.”, a prefix lookup is attempted.

The query processor attempts to provide a com-
plete set of resource records that are related to the
query in some way. For example, for an IP ad-
dress, all A records referencing the IP address are
returned. For each of the domains in the A records,
the CNAME closure is returned. The CNAME clo-
sure for a domain is the smallest set such that it
contains the domain, and for each CNAME alias
which refers to a domain in the closure, it also

F. Weimer, Passive DNS Replication, Draft (r11)

includes the alias name. In addition, an IP ad-
dress lookup returns PTR records and blacklist en-
tries. For domain lookups, both forward and re-
verse lookups are performed automatically.

Output format. The results are presented in ta-
ble form, one resource record per row. Columns are
separated by tabulators, rows by line feeds. The
first column in a row is the domain name of a re-
source record, the second one the record type (“A”,
“MX” and so on), the third one the first data item
(usually a domain name or an IP address). Further
data items may appear in the following columns,
depending on the record type.

This primitive output format is designed to fit in
with the standard UNIX tool set (shell pipes, grep,
cut, sed). This combination allows complex ad-
hoc queries against the database (although manual
query planning is required).

Point-in-time recovery. A special command
line option can be used to limit the output to all
that have been seen first before a certain time. This
allows the user to exclude junk records which have
been added to the zone at a later time.

Web-based front end. RUS-CERT offers a
publicly accessible front end to their collector
database at:

http://cert.uni-stuttgart.de/
stats/dns-replication.php

This public front end only supports a subset of the
queries described above, and the number of records
which are returned in response to a query is limited.

Requests for extended access to the database
should be directed to the author.

6 Performance

Given that all the data is not mission-critical,
strictly speaking, the collector uses Berkeley DB
in a mode that preserves database integrity in case
of application failures, but not system crashes.

The collector currently runs on a cheap, off-the-
shelf Athlon x86 machine with only 512 MB of main
memory. This machine has been upgraded with two
SCSI disks (which can process about 200 transac-
tions per second each).

12

Although the interning step was introduced to
make the database more compact, the working set
no longer fits into main memory. This is particu-
larly noticeable during interning, which is bound by
disk seek time. Time spent on interning although
dominates the total processing time for updates.

Throughput ranges from 700 and 2,500 processed
DNS response records per second, depending on the
variability of the domains in those records. By in-
creasing the batch size and sorting records before
accessing the database to increase locality, through-
put typically increases by a factor between two and
three.

Table 2 shows the sizes of various tables. The in-
dexes consume 2.6 GB of additional storage. Gener-
ally, they are slightly smaller than the correspond-
ing tables, except for the three indexes on domains,
which contribute another 1.8 GB in total.

Table Records Size
domains 24 x 108 777 MB
A 7.6 x 108 333 MB
MX 1.1 x 108 54 MB
CNAME 0.9 x 10° 33MB
NS 7.2x 10 323MB
PTR 8.3 x 106 262 MB
Total \ 1782 MB

Table 2: Collector table sizes

7 Coverage estimate

In this section, we try to estimate the coverage of
the DNS replication server running at RUS-CERT.

Table 3 shows data for five different hosts at a
German web hosting company. The first column
lists the number of domains hosted on each server,
the second indicates the number of sites (there are
some sites without any domain), the third the sites
which are actually active (having at least 1,000 hits
in the last month). The fourth column shows how
many domain names have been replicated. The
final columns are coverage estimates, the ratio of
replicated domains to hosted domains, and the ra-
tio of replicated domains to active domains. The
number of active domains is estimated by multiply-
ing the total number of domains by the quotient of
active sites and total number of sites.

F. Weimer, Passive DNS Replication, Draft (r11)

Dom | Sites | Active | Seen | D% | A%
15382 | 7423 2089 | 248 16| 57
12716 | 12805 1272 67| 05| 5.3
21357 | 8337 1854 10 00| 02
9498 | 10935 1406 | 109 | 1.1 | 8.9
10320 | 10449 1617 | 118 | 1.1 | 74
69273 [49949 | 8238 | 552 | 0.8] 4.8

Table 3: Coverage estimate

The results, while not very encouraging, suggest
that the current replication system (with sensors
based in Germany) catches between 0.8 and 4.8 per-
cent of all German domain names used by active
web sites.

8 Privacy Implications

Two different kinds of personally identifiable infor-
mation arises in the context of domain names: data
on the circumstances of the query (IP addresses in-
volved, time of query, the domain name requested),
and the actual contents of a domain name.

The first issues are easily addressed by the place-
ment of the sensors. If the guidelines outlined in
section 5.2 are followed, the sensor only observes
inter-server traffic. This means that end user IP ad-
dresses cannot be recovered at that point. Thanks
to caching, most queries do not result in inter-server
queries, which further reduces the potential for mis-
use. Using flow data (see Navarro et al., 2000), it
might be possible to correlate the time-stamp infor-
mation and server IP address information in both
data sets and thus obtain the end user addresses for
some non-cached queries, but this privacy invasion
is more a result of flow logging than of our DNS
replication effort.

The second set of issues is harder to dismiss.
There are a few web service providers which use
wildcard A records and session IDs embedded into
domain names to implement user tracking. In one
case, these domain names are embedded in “web
bugs” and are used to track users without their
consent, so the publication of these domain names
does not do any harm (because it dilutes the user
identification, which is increasing privacy in this
case). In other cases, the domain name contains a
session ID within a web application.

13

As a consequence, the publicly accessible
database front ends delay the availability of new
resource records by 20 minutes. It is expected that
after this time period, potentially affected sessions
have expired.

9 Conclusion and future work

In this report, we motivated the need for pas-
sive. DNS replication, described an architecture
and an implementation, and presented some statis-
tics about the DNS replication service running at
RUS-CERT. This service is already being used
for CERT-related activities, configuration check-
ing, and policy enforcement by network adminis-
trators.

Of course, we plan to extend the sensor network
to increase coverage, but we are going to address
some of the shortcomings identified above as well,
as described below.

More sensors. Beyond highly frequented web
sites and mail servers, DNS queries often target do-
mains of regional interest. This means that more
sensors are needed to reach reasonable coverage at
a global level. Offers to host sensors should be di-
rected to the author.

Verification. At one point, it will be necessary to
implement some kind of verification (section 4.2).
At first, only a subset of all responses will be sub-
ject to verification (to tackle the truncation prob-
lem described in section 4.3).

Advanced queries. Currently, our query pro-
cessing tool is quite limited. While it has been
demonstrated that the current query tools can be
integrated into shell scripts to implemented more
advanced queries, tighter integration with other
data sets (such as RIR database information and
the Internet routing table) is desirable.

Support for regular expressions is also an inter-
esting option, but it remains to be seen if it can be
implemented efficiently on millions of domains.

Meta-replication. Growing interest in passive
DNS replication will result in the need to replicate
the replica (for example, for research purposes at

F. Weimer, Passive DNS Replication, Draft (r11)

other sites). The time-stamp information (which is
part of the DNS flows) is certainly useful for incre-
mental replication, but the details still have to be
worked out.

Feasibility of some applications. The feasibil-
ity of some of the applications presented in section 3
still has to be demonstrated in practice. In partic-
ular, it would be very interesting to try if passive
DNS replication can be used to detect some kinds
of phishing attacks.

References

DENIC eG, Statistics (2004), URL
http://www.denic.de/en/domains/
statistiken/index.html.

Zone Labs, Inc., Temporary loss of transatlantic
connectivity affected some ISPs, ZoneAlarm
users (2003), URL http://zonealarm. com/
store/content/company/aboutUs/pressroom/
pressReleases/2003/outageFAQ. jsp.

R. Lemos, Assault on Net servers fails (2002),
URL http:
//zdnet.com.com/2100-1105-963005.html.

P. Artmann, Freemail-Provider GMX blockiert
(2000), URL http:
//www.heise.de/newsticker/meldung/8640.

The Internet Corporation for Assigned Names and
Numbers, Policy on transfer of registrations
between registrars (2004), URL http://www.
icann.org/transfers/policy-12jul04.htm.

J. Libbenga, Why Spamcop got yanked (2003),
URL http://www.theregister.co.uk/2003/
11/03/why_spamcop_got_yanked/.

The Internet Corporation for Assigned Names and
Numbers, Amendment 6 to ICANN/DOC
Memorandum of Understanding (2003), URL
http://www.icann.org/general/
amend6- jpamou-17sep03.htm.

VeriSign, Inc., TLD zone file access program
(2004), URL
http://www.verisign.com/nds/naming/t1d/.

14

G. Pazi, D. Touitou, A. Golan, and Y. Afek,
United States Patent Application 20030070 A1,
United States Patent Office (2003).

J.-P. Navarro, B. Nickless, and L. Winkler (2000),
URL http://www.usenix.org/publications/
library/proceedings/1isa2000/full_
papers/navarro/navarro_html/.

D. J. Bernstein, Using maildir format (2003),
URL http://cr.yp.to/proto/maildir.html.

Sleepycat Software, Inc., Berkeley DB (2003),
URL http://www.sleepycat.com/docs/.

Acknowledgments

The author wishes to thank Karl Gaissmaier for
helpful suggestions regarding 1ibpcap filter expres-
sions.

RUS-CERT kindly provides resources to run
the implementation of passive DNS replication de-
scribed in this report. Several third parties donate
DNS response data, making this a distributed effort
by the Internet community.

